

DOCUMENT						
Document ID	RF-TN-15	Version	V1.0			
External reference		Date	14/10/2023			
Author	TBD					
Project Code						
Document's name Messages exchanges with Lora Network server						

	Validation		
Fonction	Destination	For validation	For info
Writer		✓	
Reader		✓	
Validation			✓

DIFFUSION						
Fonction	For action	For info				
		✓				
		✓				

	UPDATES						
Version Date Auteur			Evolution & Status				

Disclaimer

The contents are confidential and any disclosure to persons other than the officers, employees, agents or subcontractors of the owner or licensee of this document, without the prior written consent of Beanair Sensors 2023, is strictly prohibited.

Beanair makes every effort to ensure the quality of the information it makes available. Notwithstanding the foregoing, Beanair does not make any warranty as to the information contained herein, and does not accept any liability for any injury, loss or damage of any kind incurred by use of or reliance upon the information.

Beanair disclaims any and all responsibility for the application of the devices characterized in this document, and notes that the application of the device must comply with the safety standards of the applicable country, and where applicable, with the relevant wiring rules.

Beanair reserves the right to make modifications, additions and deletions to this document due to typographical errors, inaccurate information, or improvements to programs and/or equipment at any time and without notice.

Such changes will, nevertheless be incorporated into new editions of this document. Copyright: Transmittal, reproduction, dissemination and/or editing of this document as well as utilization of its contents and communication thereof to others without express authorization are prohibited. Offenders will be held liable for payment of damages. All rights are reserved.

Copyright © Beanair Sensors 2023

Contents

1	List o	f all messages Types	6
2	Satev	ris® Device Startup : Which messages are transmitted ?	10
3	Mess	ages Transfer Method : GET and POST	11
4	Error	message	12
5	How	to extract the sensor profile ?	13
	5.1	Hello Message transmitted on-site	14
	5.2	Hello message requested Remotely	15
6	Senso	or zeroing	16
	6.1	Sensor zeroing messages (when sensor zeroing is done on monitoring site)	16
	6.2	Sensor zeroing requested remotely	17
7	moni	TOring mode	18
	7.1	slow monitoring mode	18
	7.2	Alarm mode	18
	7.3	All the Timing values in Alarm mode	19
	7.4	Alarm notification Rule	20
	7.4.1	OR Alarm notification Rule	21
	7.4.2	AND Alarm Notification Rule	22
	7.5	Alarms Thresholds	23
	7.5.1	High Threshold Alarms	23
	7.5.2	Low Threshold Alarms	24
	7.5.3	Mixed High-Low Thresholds alarms	24
8	Diagr	nostic Report	26
	8.1	Which Information are transmitted frequently?	26

1 LIST OF ALL MESSAGES TYPES

Message Type ID	Value	Request Transfer Method (Satevis device to cloud)	Request Transfer Method (cloud to satevis device)	Default Lora Port ID	Short description
Device Main Profile	0x11	POST	GET	0x0F	Fisrt Message Tx at startup
Sensor Profile	0x12	POST	GET	0x0F	Second Message Tx at Startup
System Diag Report	0x21	POST	GET	0x10	Cyclic Diag Report - Refresh rate can be remotely configured (SDRR)
Slow Monitoring' Data Transmission message	0x22	POST	N.A.	0x12	Cyclic Data transmission, several samples can be encapsulated in the message
Alarm Event (part of 'Alarm Monitoring' mode) Transmission message	0x23	POST	N.A.	0x12	Alarm event transmitted in the case if an alarm threshold is reached
Data Logs 'Slow Monitoring' Transmission message	0x24	POST	GET	0x12	Download of Logs files related to Slow Monitoring mode

Data Logs 'Alarm Monitoirng' Transmission message	0x25	POST	GET	0x12	Download of Log files related to Alarm Monitoring
Hello Data Transmission message	0x26	POST	GET	0x12	Hello Message transmitted during startup or on user request
Keep Alive (part of 'Alarm Monitoring' mode) Data Transmission	0x27	POST	N.A.	0x12	Keep Alive data transmission transmitted frequently in Alarm Monitoring Mode
LORA Stack Info	0x30	POST	GET	0x13	Lora stack info (For security reasons Lora settings can be only changed from USB software)
Monitoring Full Config	0x31	POST	POST, GET	0x13	All the Timing parameters related to Monitoring mode
Sensor Channel config	0x32	POST	POST, GET	0x13	Sensor Channel configuration including alarm thresholds type, and values
Monitoring Mode config	0x33	POST	POST, GET	0x13	Monitoirng Mode configuration
System Diag Settings	0x34	POST	POST, GET	0x13	System diag refresh rate configuration
Hardware Reset Request	0x35	N.A.	POST	0x13	Remote request of Satevis device

Lora RejoinFrequ config	0x36	POST	GET, POST	0x13	Cyclic Lora Rejoin cycle
Lorawan com PORT config	0x37	POST	GET, POST	0x13	Lorawan PORT configuration
Clock Source config	0x38	POST	GET, POST	0x13	Currently only clock source provided by LNS is available
N.A for future applications	0x39 to 0x4F	N.A.	N.A.	0x13	
DataLogger Config	0x50	POST	POST, GET	0x11	Datalogger settings
DataLogger Status	0x51	POST	GET	0x11	Provides datalogger status
Sensor Zeroing config	0x60	N.A.	POST, GET	0x13	Enable/Disable sensor zeroing
Sensor Zeroing Results	0x61	POST	GET	0x13	Transmits offsets values on Inclinometer sensor
Inclino sensor config	0x62	POST	POST, GET	0x13	Inclinometer sensor range config
Sensor calib. Date	0x63	POST	GET	0x13	Date of calibration for all the sensor channels
Error Status	0xFF	POST	N.A.	0x13	Error statsu tramsitted by Satevis device if the GET/POST message is not well formed

Messages type transmitte by satevis devis durint the Init

Message Type related to data measurement and diag transmitted frequently (user configurable)

Message Type Posted during Init or on User Request(Push Button)

Message Transmitted during Init or frequently (user configurable)

Remote config related to Inclino sensor (Sensor Type 0x31)

Remote device config. Transmitted only on GET request from cloud software

Datalogger config & status

Error Message

2 SATEVIS® DEVICE STARTUP : WHICH MESSAGES ARE TRANSMITTED ?

At device startup, the following messages are transmitted automatically to the cloud software:

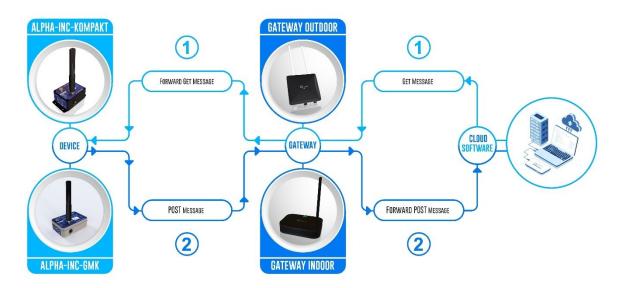
- Main Profile: which contains the Satevis® Device ID, all the versions ID (Hardware, Firmware, Lora Stack), Lorawan® Settings and all the timing parameters related to the different monitoring modes
- Sensor Profile: contains all the sensor channels profile connected to Satevis® Device, this will
 allow the user to create a database on the cloud software containing the Sensor Type,
 Conversion Method to the physical unit

Satevis® device will receive a clock synchronization message from LNS on PORT 202.

When Profile Information is tranmitted, Satevis® device starts to send Hello Message followed by System Diag Report, confirming the device is working properly.

Clock synchronization is a critical function used on data timestamping and alarm management. Make sure your LNS (Lora Network Server) integrates Clock synchronization on PORT 202, popular and recent LNS integrate this services. This service doesn't need specific development on your side.

For more information about Clock synchronization, please read Lora Alliance Spec : click here



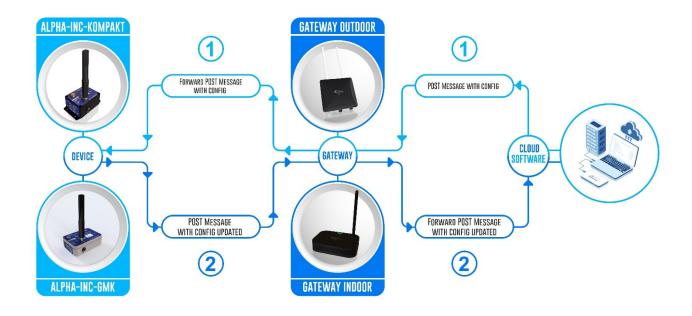
3 MESSAGES TRANSFER METHOD : GET AND POST

GET request

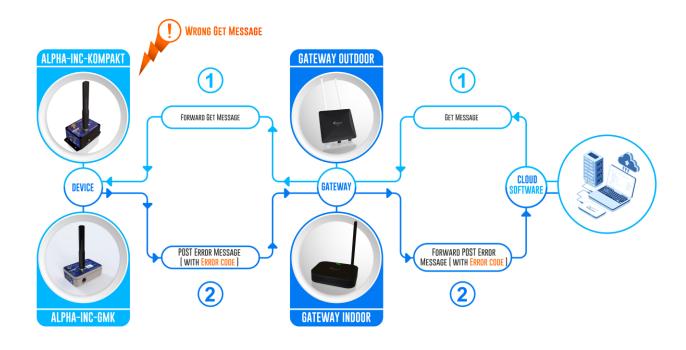
GET Request is transmitted by the cloud software to read the device status or currents settings. If the GET request is well-formed, Satevis® device answers by a POST request containing all the status information related to the GET message.

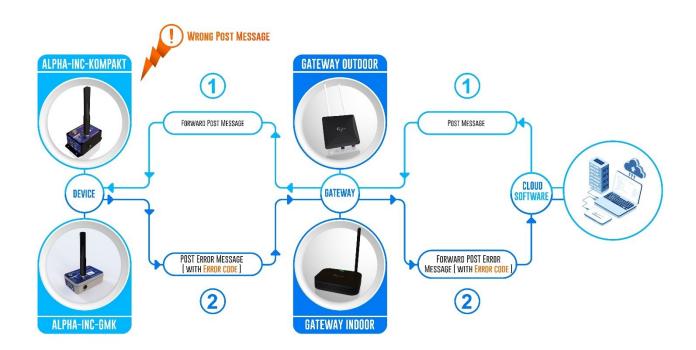
POST Request

POST request can be transmitted by Satevis® device to the cloud software, it contains:


- Device profile at Startup,
- Device current configuration (as a response to a GET request)
- Diagnostic
- Data Measurement

When POST request is transmitted by Cloud software it contains:


- New device settings (ex: alarms thresholds, new measurement mode.....)
- Initiate datalogger download


TRIAXIAL INCLINOMETER SENSOR

4 ERROR MESSAGE

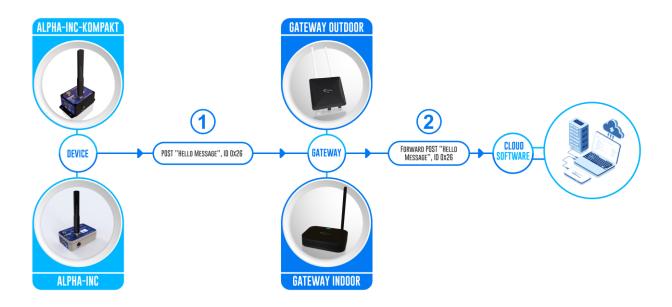
5 HOW TO EXTRACT THE SENSOR PROFILE?

Hello Message

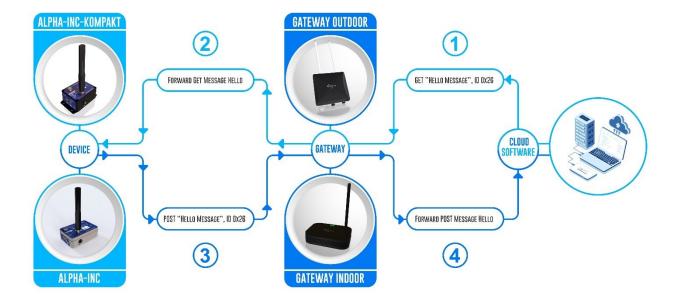
5.1 HELLO MESSAGE TRANSMITTED ON-SITE

Caption 1: After installing the Alpha-Inc-Kompakt inclinometer, the field operator can check at any moment if the sensor is working properly

Caption 2: By Holding the magnet on the 'Hellol' label for more than 5s, the sensor wakes-up and transmits to the Lorawan network the data measurement followed by the system diagnostic (battery status and network quality)

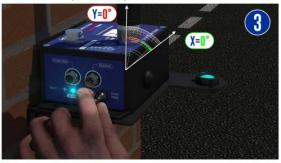


Caption 3: The Activity Led blinks in green color, confirming that a data measurement is transmitted to the Lorawan network.


Caption 4: The field operator can check on Satevis® Cloud software (or a third-party cloud software) if his sensor is working properly.

5.2 HELLO MESSAGE REQUESTED REMOTELY

User can also send a GET request to receive Hello Message:



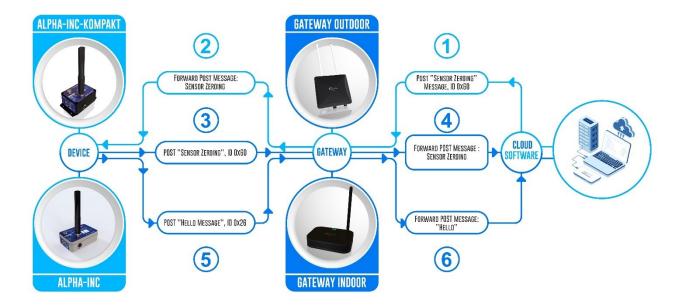
6 SENSOR ZEROING

6.1 SENSOR ZEROING MESSAGES (WHEN SENSOR ZEROING IS DONE ON MONITORING SITE)

Caption 1: Even if an angle bracket is used, it's sometimes difficult to bring a zero-offset on both X and Y axis (in the case if Z axis is on the same direction than Earth Gravity). In some cases, the field operator can not spend too much time on this task.

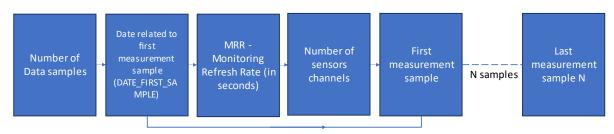

Caption 3: The Activity LED blinks in blue, the sensor zeroing starts on both X and Y axis . When this process is done, the Activity led will blink again in blue color and transmits a data measurement to the Lorawan® network. If the sensor zeroing process is not done correctly (the device is moving) the Activity Led will blink in Red color.

Caption 2: To enable the sensor zeroing function, hold the magnet on 'Sensor Zeroing" Label for more than 20s.


Caption 4: The Sensor-zeroing process can be also done remotely from the cloud software.

6.2 SENSOR ZEROING REQUESTED REMOTELY

Sensor zeroing can also be done remotely from cloud software, there is no need to send a technician on the monitoring to do this operation.



7 MONITORING MODE

7.1 SLOW MONITORING MODE

User-configurable settings related to Slow Monitoring Mode:

- MRR Monitoring Refresh Rate
- Max Number of data samples per sensor channel in a transmission message (NB_MON_DATA_SAMPLES)

Gives the date of first measurement sample

How to get the date of Last Measurement sample:

Date_Sample_N = DATE_FIRST_SAMPLE + MRR (seconds)

7.2 ALARM MODE

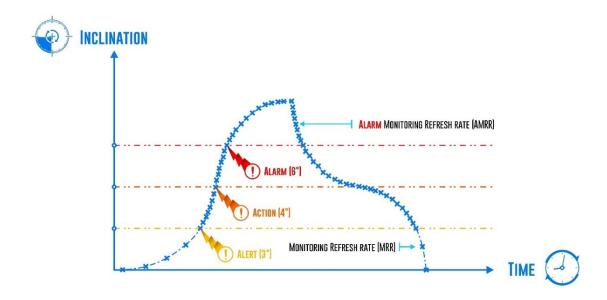
Three level of Alarm notifications can be transmitted to cloud software Alert /Action/Alarm .

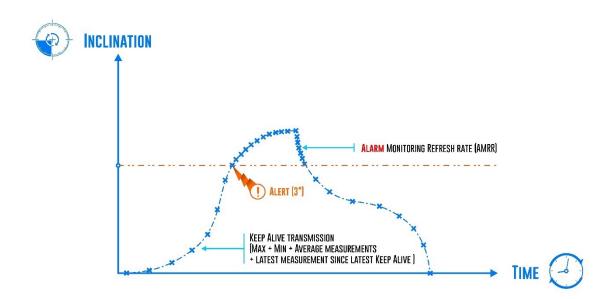
Several settings are available for an accurate alarm configuration:

- Low or High Alarms Thresholds can be configured;
- For a real-time alarm tracking, the Monitoring refresh cycle can be accelerated when a threshold is reached,
- Alarms can be independently enabled/disabled on the measurement channels;

User can create 'OR' or 'AND' alarm notification rule between each measurement channel .

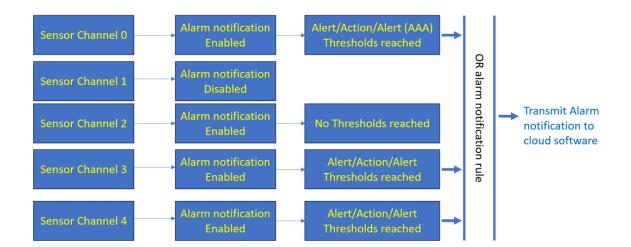
If the Alarm threshold is not reached:


• Satevis® device transmits frequently a Keep Alive Message to keep informed the user about the device operation;


• For each measurement channel, Max/Min/Average values and Latest measurement are encapsulated in the Keep Alive Message;

7.3 ALL THE TIMING VALUES IN ALARM MODE

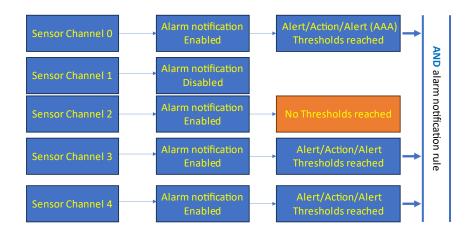
- AMRR (Alarm Monitoring Refresh Rate): In the case of AAA threshold is reached, the
 monitoring rate is accelerated to track closely the alarm evolution;
- MRR (Monitoring Refresh rate): In the case if AAA threshold is not reached, the device monitors an alarm at a slower rate


7.4 ALARM NOTIFICATION RULE

Two alarms notifications rules are present:

- Logical 'OR' Alarm Notification: Alarm notification is transmitted to cloud software if a AAA Threshold is reached on one of the sensor channel (Alarm Notification should be enabled on the sensor channel)
- Logical 'AND' Alarm Notification: Alarm notification is transmitted to cloud software if a
 AAA Threshold is reached on all the sensor channels at the same time (Alarm Notification
 should be enabled on the sensor channel)

7.4.1 OR Alarm notification Rule



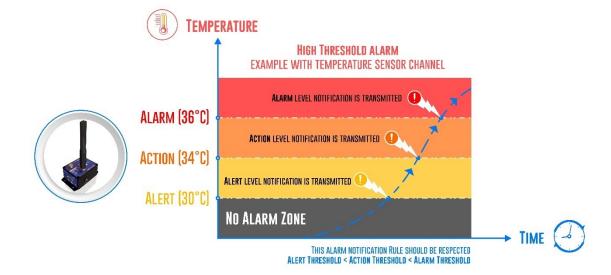
7.4.2 AND Alarm Notification Rule

Logical 'AND' alarm notification rule can be enabled if a correlation is present between the sensor channels. Example of an Inclinometer sensor combined with structure/equipment temperature, a temperature raise on the structure can lead to its deformation.

Example 1: No Alarm notification is transmitted to cloud software as on Sensor Channel 2 , no AAA Thresholds was reached.

Example 2 : An alarm notification is transmitted to cloud software as all the sensor channels reached a AAA Thresholds.

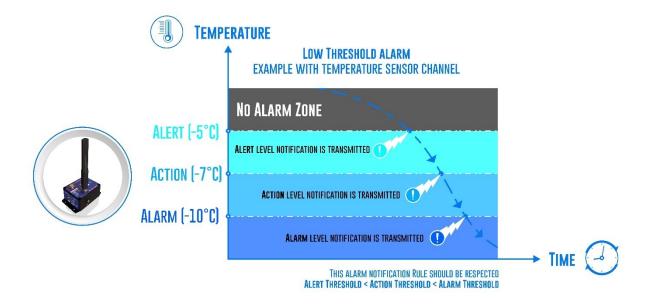
7.5 ALARMS THRESHOLDS


Three levels of alarms notifications are available allowing users to redirect the alarm notification to different emails or to activate a relay:

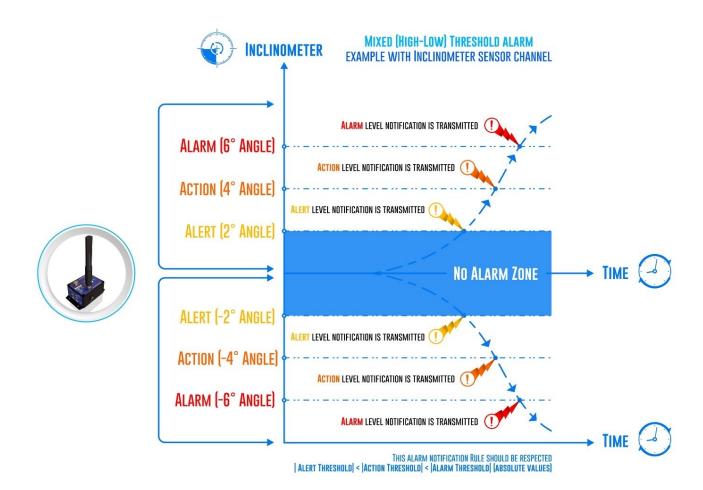
- Alert level: lowest level of alarm,
- Action level: medium level of alarm notification
- Alarm level: critical level, field intervention is requested

User can configure High/Level Thresholds alarms, explained hereafter.

7.5.1 High Threshold Alarms


High thresholds alarms can be used to trigger an alarm when a data measurement is rising. Example of temperature sensor:

7.5.2 Low Threshold Alarms


Low thresholds alarms can be used to trigger an alarm when a data measurement is falling. Example of Temperature sensor :

7.5.3 Mixed High-Low Thresholds alarms

Mixed High-Low can be used for sensors used to track a structure/equipment moving to one direction and the opposite.

8 DIAGNOSTIC REPORT

8.1 WHICH INFORMATION ARE TRANSMITTED FREQUENTLY?

Internal
Temperature
for Battery
Monitoring and
internal sensor
drift

Battery Diag: Status, Voltage, Level Data Logger Status & Memory used Power source update (USB Power/Battery or other mains power if available)

